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Abstract

Autonomous uncrewed areal vehicles require the ability
to navigate various environments without collision fail-
ures. These systems already serve important roles in a
variety of fields ranging from entertainment to military
application. There is a desire to replace costly multi-
sensor based systems with a system based solely on
computer vision. However, these systems suffer from
varying success rates in object recognition and obsta-
cle avoidance. In some cases object recognition is to
slow to avoid a collision failure. Current state-of-the-
art solutions for computer vision based systems imple-
ment artificial neural networks or an algorithm written
specifically for a particular task. This work proposes a
paired convolutional neural network architecture for the
execution of object recognition and obstacle avoidance
in uncrewed areal vehicles. This work anticipates the
paired convolutional neural network architecture to pro-
duce a vision based autonomous system with high suc-
cess rates in obstacle avoidance and low rate of collision
failures while maintaining competitive flight speed.

Introduction
Uncrewed arial vehicles (UAVs) have a wide range of
applications, from children’s toys to military operations.
One such environment is UAV racing as a sport which
has produced championship UAV pilots that can fly UAVs
through obstacle courses performing maneuvers including
corkscrews, loops, suicide dives, and reaching speeds up to
120mph. There is a high demand for advancement in devel-
oping an autonomous UAV (AUAV) system with the abil-
ity to navigate through obstacles, avoid collisions, and reli-
ably execute objectives. The UAV maneuverability achieved
by champion UAV racing pilots serves as a benchmark for
AUAVs, a benchmark with an extreme gap in performance.
Lockheed Martin and CEO of The Drone Racing League,
Nicholas Horbaczewski shared a vision of leveraging the
sport to ramp up advancements in AUAV technology. This
vision brought about the foundation of Lockheed Martin’s
AlphaPilot Innovation Challenge which challenges partici-
pants to design AUAV capable of piloting through profes-
sional drone racing courses. The metrics used to determine
the winning AUAV are, firstly, the percentage of course com-
pleted, and secondly, the speed of completion. The AlphPi-
lot Innovation Challenge finalist competed at Artificial In-

telligence Robotic Racing (AIRR) World Championship. At
this event, of the nine finalists, only two AUAVs success-
fully completed the course, a failure rate of 78%. Of the
two AUAVs that completed the course, the winner had an
average speed of 1.5m/s. The architecture utilized by this
AUAV serves as a benchmark for this work. The Game of
Drones is another drone racing platform and is where the
second benchmark for this work is derived. A Microsoft ini-
tiative working to close the gap between AUAVs and pi-
loted UAVs The Game of Drones runs on the AirSim vir-
tual platform developed by Microsoft and Stanford. Teams
load there computer vision-based navigation models onto a
virtual drone that then uses the model to traverse a rigorous
virtual course. Winning requires completing more gates than
any other team or completing the same number of gates with
a faster track time. This work utilizes recent advances in
lightweight visual transformers. Applying the visual trans-
former model OFP a sequence to sequence framework pre-
sented by (Wang et al. 2022) in conjunction with the Sep-
arable Pyramidal Pooling EncordEr-Decoder (SPEED) pre-
sented by (Papa et al. 2022) for depth perception and ob-
ject avoidance guided controllers based on (Zhang et al.
2020) work with monocular trajectory planning. Combin-
ing the three listed methods will yield a general solution
for the computer vision based AUAV navigation situation.
Providing enhanced object detection, route navigation, col-
lision avoidance, and an increased success rate of monocular
AUAV flight.

Related Work
Autonomous flight requires the successful syntheses of mul-
tiple dynamic objectives and systems. In this work we focus
in on object detection, route estimation or obstacle avoid-
ance and depth estimation. The following related works rep-
resent the top performing AUAV systems from three sepa-
rate competitions and presents the methods utilized by each
team with respect to the noted systems of focus for this work.

UZH Robotics and Perception Group: Optimal
Methods meet Deep Learning for Autonomous
Drone Racing
Object detection: Utilizing A deep network the team first
delivers an input image to a shallow DroNet architecture



based Convolutional Neural Network, the outputted carica-
turists are then handled by two individual multilayer percep-
trons.
Collision avoidance and Rout Estimation: Utilizing a suc-
cessive two stage system, first a waypoint is derived from
gate estimated location and a favorable path is chosen. In
the next stage the onboard controller is relayed directions to
navigate to the waypoint and flight path is tracked for im-
proved stabilization between waypoints.
Depth Estimation: This model calculates the deep network
derived regression of the input RGB image’s mean in order
to determine distance to a gate.

Sejong University: Report for Game of Drones A
NeurIPS 2019 Competition
Object detection:: Using a Neural Network as an object de-
tection model. The team implements U-Net segmentation an
actor net and a critic net in the process of training the neu-
ral network. In order to develop a reward based guidance for
navigation decisions derived from the initial detection of a
gate and current estimated AUAV location.
Collision avoidance and Rout Estimation: Developing
and implementing a rule-based control scheme called move-
BySplineAsnc and moveOnSplineAsnc. The control scheme
was trained by running the actor net through a virtual gate
from a number of approach trajectories and presenting it
with a risk reward value depending on if it makes it through
the gate or suffers a collision failure while the segmenta-
tion compressed and preserved valuable data gained from
the simulation.
Depth Estimation: (At this point it is unclear to me how
they handle depth estimation. I believe it is derived from data
gained from their object detection model)

MAVLab: A Computationally Efficient
Vision-Based Navigation And Control Strategy
Object detection: The system utilizes deep learning based
optic flow and algorithms they call Snake gate detection and
Histogram gate algorithm which were uniquely designed
for the competition.
Collision avoidance and Rout Estimation: Utilizing a PD
controller and the Snake gate detection algorithm the AUAV
is centered to the gate when ever there is a positive reading
of a gate in view. To compensate for situations when no gate
is in view the team implements a state estimator arc to turn
the drone in the direction of the next gate.
Depth Estimation: Provided attitude estimate to the Snake
Gate algorithm developed, also allows for depth estimate.

MAVLab, the winners of the AlphPilot Innovation Chal-
lenge, lay out the process of developing their benchmark
AUAV in (Li et al. 2020) . A detailed system overview
establishes that the system hardware utilized consists of a
camera with six optical elements and 14 Megapixels sen-
sor, Parrot p7 dual-core CPU cortex 9 (max 2GHZ), an
MPU 6050 IMU and sonar with less than 8m range. Their
AUAV utilizes a novel snake gate detection algorithm to
identify and a PD controller to steer the drone to the center

of the detectable rectangular-shaped gates. Utilizing classic
complementary filter for attitude and heading reference sys-
tems (AHRS) then using Kalman filter to fuse AHRS and
IMU measurements to estimate position. The system im-
plemented a prediction-based feed-forward control scheme
when the steer when snake gate detection algorithm does
not detect a gate. Lastly, as a low-level attitude controller,
their system employed an adaptive incremental nonlinear
dynamic inversion (INDI). Utilizing the described AUAV
was able to navigate a course at an average speed of 1.5m/s.
However, (Li et al. 2020) explains that there are failure cases
where the drone crashes into the gate due to late gate detec-
tion and complete detection failures.

Problem Statement
Working to develop a robust AUAV is a global effort. Cur-
rently, the success rate in developing an AUAV system that
can navigate a course without crashing is at most 22% when
considering the AIRR world championships, which–within
the scope of the competition–consist of the most competi-
tive AUAVs yet to be developed. This work aims to produce
a general AUAV system that efficiently detects and classi-
fies objects, develops superior navigational routes, and sig-
nificantly reduces collision rates, all while increasing the
AUAV’s rate of travel. Lastly, the systems utilized by the
benchmark AUAV employed a visual navigation algorithm
specific to rectangular gate detection and will fail if the gate
shape is changed. The successful execution of this work will
produce a general system that does not rely on a mission
specific algorithm, and instead accepts situational parame-
ters to yield a significant gain in the operational scope of the
AUAV.

Approach
Proposed System
To handle object detection, the lightweight vision trans-
former, OFA, which through a sequence-to-sequence
learning framework, can perform vision and language
tasks with state-of-the-art accuracy and competitive speed
presented by (Wang et al. 2022) will be implemented. This
transformer detects, classifies, provides objects in frame
location, and can perform impressive image infilling. If this
transformer can be implemented onto memory-constrained
drones and tuned to increase throughput, these capabilities
would provide a highly effective object detection model. In
managing depth estimation and obstacle avoidance issues
associated with monocular vision, this work proposes
utilizing a paired CNN architecture, an overview of which
can be seen in figure 1. The first CNN takes in a sequence
of two one-dimensional frames that have been combined
into one two denominational array and will produce optical
flow-related values. The second CNN takes in the values
produced by the first CNN and three-dimensional destina-
tion coordinate from which it outputs an optimal directional
decision. The proposed CNN architecture aims to be as ac-
curate as the RT-ViT model developed by (Ibrahem, Salem,
and Kang 2022) and as fast as the SPEED model developed
by (Papa et al. 2022). RT-ViT addresses depth estimation



Figure 1: Paired CNN Architecture

in real-time situations when depth estimation must be
conducted with only monocular data. The performance of
RT-ViT, reached state-of-the-art accuracy on multiple data
sets, including NYU-depthv2 and CITYSCAPES.
However, the fastest RT-ViT model, ViT-t16+DE, had
a maximum frame rate of 20.83. SPEED addresses
collision avoidance in real-time situations, with only
monocular data available. The performance of SPEED
is better than other fast throughput architectures, even
on low-resource settings (Papa et al. 2022). The SPEED
model utilizes two depth-wise separable pyramidal pooling
layers, increasing the inference frequency and reducing
computational complexity. Utilizing NYU Depth v2 and
DIML Kinectv2 datasets to benchmark monocular depth
estimation. SPEED achieves state-of-the-art results for
fast throughput compared with related works on the DIML
Kinect v2 data set and outstanding results in error estimation
compared to more complex models. When presented in
2019, SPEED’s performance on the NYU Depth v2 data
set was near the state-of-the-art at the time(Papa et al. 2022).

Furthermore, the obstacle avoidance scheme proposed
by (Zhang et al. 2020) will be employed to provide reli-
able route estimation. The scheme will be implemented to
develop the three-dimensional coordinates, which will be
passed to the second CNN in the proposed paired CNN ar-
chitecture. In their work (Zhang et al. 2020) states that re-
liable collision prevention estimation is unattainable with
monocular data alone. Their work proposes an obstacle col-
lision avoidance trajectory planning scheme as an alterna-
tive to collision prevention. Considering the characteristics
of monocular optical measurement, they utilize two obsta-
cle localization models based on relative range and rela-
tive angle. This model enhances the capability of AUAVs
to avoid collision trajectories and achieve favorable results
when compared with methods capable of geometric colli-

sion avoidance utilizing global knowledge.

Measuring Results
Environmental constraints make reproducing the MAVLab
benchmark AUAV experiment unfeasible in this work. How-
ever, utilizing The Tello EDU model number: TLW004, this
work will fit the benchmark model as tight as possible to the
TLW004. Available specifications show that the TLW004
is equipped with 720p HD transmission, 5MP photos,
FOV: 82.6, video: HD720P30, Intel processor, range finder,
and barometer. After fitting the benchmark model to the
available TLW004 the MAVLab metric tests will be run to
establish a benchmark figure running MAVLab system on
the TLW004. Once the benchmark has been established, the
system proposed in this work will be fitted to the TLW004
and the tests will be repeated. Taking the percentage of
course completed, average observed speed, gate detection
hit/miss rate, and error distribution between estimated states
and ground-truth states as metrics to compare the results of
the proposed system with the established benchmark.

Microsoft’s drone racing simulator, AirSim, will be
employed in measuring this works proposed system against
the top-performing system utilized by Sejoung University.
Sejoung University provides metrics for the performance
of their AUAV system in (Shin, Kang, and Kim ). Loading
the proposed work into the AirSim testing the performance
of the system and measuring results with respect to the
metrics provided by (Shin, Kang, and Kim ) will allow for
determination of the performance of the proposed system
against that of the top-performing Sejoung University
system.

After metric comparisons are complete, to test the scope
of the proposed system’s operational environment, the
AUAV will navigate through three additional variations of



Figure 2: Example of drone state data collected.

a test course. The first variation will replace all rectangular
gates with circular ones. The second will replace all circu-
lar gates with rectangular obstacles that must be maneuvered
around to avoid a collision. Lastly, the course will combine
rectangular gates, circular gates, rectangular obstacles, and
circular obstacles. The successful completion of these dif-
fering environments will demonstrate a degree of the scope
for the operational environment provided by the proposed
AUAV system. Possible data sets for this work include Wild-
UAV, EuRoC MAV, TUM monoVO, NYU Depth V1/V2,
RGB+D, PASCAL VOC12, MS COCO, ImageNet, Open
Images V6, and a self-derived data set for control outputs.

Experiments and Results

Data Set

TThe development of a data set was necessarily added to
the scope of this work to experiment and train the proposed
paired CNN architecture. Data was collected by flying the
Tello drone indoors in both congested and clear environ-
ments. The video feed was recorded at a rate of 30 frames
per second and stored as an avi file for each session. Dur-
ing each flight session, the drone state information was also
recorded at a rate of 30 states per second. This information
includes drones x, y, z, acceleration values relative height,
and more. An example of this data can be seen in figure
2. While the drone state information includes the drone’s
height, z coordinate, it does not include x and y coordinates.
Using the drone’s tunable travel rate in centimeters per sec-
ond measurements were conducted to calibrate the drones
in-flight x and y coordinates relative to its initial hover posi-
tion after take-off. This information was added to the drone’s
state data and can be seen in figure 2 labeled as x, y, z, and z-
relative. Z-relative is the drone’s height relative to anything
directly beneath it, while z is in reference to initial take-off.
With this information, odometry maps were developed and
stored for reference as visual representations of the drone’s
traveled path. Lastly, after flight sessions were completed, a
folder for each flight containing the individual frames from
each session recording was created. From these frame files,
a data set was generated containing the optical flow informa-
tion pairs of frames. The results for each optical flow calcu-
lation were further processed, parsing each result into nine
non-lapping regions, each of which was reduced to a single
floating point value. The frames utilized in the optical flow
operation and nine region representing floating point values
generated are aligned in the data set generated. An example
of this data and a visual representation of the nine optical
flow regions can be seen in Figures 3 and 4.

Figure 3: Visualisation of the nine optical flow region.

Model Development
The development of the paired CNN architecture has been
split into two phases. The first of which develops the CNN
in charge of taking in two sequential one-dimensional
images paired together as one two-dimensional array and
generating a nine-value representation of optical flow for
the inputted sequence. After completion of this model, the
second phase of model development would begin in which
the model outputs drone motor control commands from
the nine outputs of the first CNN and three denominational
destination coordinate.

Results
In phase one, training the CNN took place in Colab Pro+
utilizing, Tensorflow, Keras, and Sklearn. The model would
be required to take in an image as a variable and predict nine
continuous values. From this, it was determined that this was
a regression model task. As such mean squared error was
implemented as the loss function, and mean absolute error
was implemented as the metric for measuring the prediction
error of the model. Experimenting with multiple architec-
tures variations of the regression model and utilizing K-Fold
cross-validation to provide the entirety of the data set, the



Figure 4: Example of Optical flow values representing nine regions of optical flow.

Figure 5: Architecture of optical flow value generating
model.

lowest mean absolute error observed was 6.1520. Meaning
that, on average, the model is 6.1520 units away from the
correct prediction. The model architecture used to produce
these results can be seen in figure 5.

Conclusion
The general solution presented in this work utilized the
visual transformer model OFA and the proposed paired
CNN architecture in conjunction with trajectory modeled for
depth perception, obstacle avoidance, and motor controllers.
The implementation of the first phase in model development
has produced a model with prediction error that encourages
improvement. Future work will include the implementation
of phase two of model development, creating a model capa-
ble of producing optimal motor control commands towards
its given destination. Completion of model development will
prompt the highly anticipated testing of the proposed general
solution against the benchmark AUAV models with respect

to the defined metrics. Given the test results, further work to
improve the model or further testing for robustness may be
implemented..
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